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LETTER TO THE EDITOR

The Berry phase for spin in the Majorana representation

J H Hannay
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Received 28 July 1997, in final form 26 September 1997

Abstract. A continuous cyclic sequence of quantum states has an associated geometric, or
Berry, phase i

∮ 〈ψ | dψ〉. For spinJ , such a sequence is described by a cyclic change in the
2J+1 coefficientsam of the basis states|J,m〉. The Berry phase is analysed here for the general
case—that is, the coefficientsam are allowed to vary in an arbitrary cyclic manner. The result
is expressed in geometric terms, specifically in the democratic representation due to Majorana.
This uniquely characterizes the spin state|ψ〉, up to overall phase, by the positions of 2J dots
on the unit sphere of directions in real space. If the positions are denoted by unit vectorsuk ,
where 16 k 6 2J , each traces out a parametrized loop on the sphere, and the Berry phase is
given by an integral of combinations of these vectors.

The geometric, or Berry phase is the real number i
∮ 〈ψ | dψ〉 associated with a cyclic

sequence of quantum states|ψ〉. The situation originally envisaged by Berry [1] was that
of an eigenstate|ψ〉 of a Hamiltonian being carried around by adiabatically cycling the
Hamiltonian. That the Berry phase still retains some naturalness even if the cycled|ψ〉 is
not an eigenstate, and even if the carrying is not adiabatic was pointed out by Aharonov and
Anandan [2]. It follows from the defining expression that the Berry phase is independent
of the definition of phase of the states in the cycle. A natural environment for the study of
the Berry phase in a system is therefore the ‘projective Hilbert space’ of states irrespective
of phase (the space of pure state density matrices|ψ〉〈ψ |).

For a spinJ system the usual description of a general state|ψ〉 is as a superposition
of the 2J + 1 basis states with definite angular momentum componentmh̄ along some
chosen axis:|ψ〉 = ∑J

m=−J am|J,m〉. For a continuous cyclic sequence of states|ψ〉 the
corresponding set of coefficientsam changes in a cyclic manner and the Berry phase is
given by i

∮ ∑J
m=−J a

∗
m dam. A well studied particular case (note (i) later) is that in which

the coefficients change in such a way that the system starts and remains in a state of fixed
angular momentum component ¯hm′ along a variable axis. The Berry phase is then minus
m′ times the solid angle enclosed in the circuit of axis directions. Beyond this, previous
studies of the Berry phase for spin include the case of ‘rigid rotation’ described in note (ii),
and the complete description of the Berry phase forJ = 1 mentioned in note (iii).

Here a complete description for generalJ is to be to be given. The set of coefficients
am is thus allowed to perform an arbitrary cycle (subject always to normalization). The
Berry phase is to be expressed in the democratic representation due to Majorana [3] in
1932. This is a natural ‘projective Hilbert space’ for a spin. The spinJ state |ψ〉 is
uniquely characterized, up to overall phase, by the positions of 2J dots on the unit sphere
of directions in real space. Rotate the spin state and the dot pattern rotates likewise. For
J = 1/2 this is the well known Bloch sphere and the dot at positionu from the centre
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represents a 2-spinor state, call it|u〉, which is definitely ‘up’ along theu direction. That
is, it has density matrix|u〉〈u| = (1+ u · σ)/2, where the components ofσ are the Pauli
matrices. For higher spin values Majorana recognized the general state as the symmetrized
outer product [4] of 2J such spin 1/2 states with different directions vectorsuk, where
16 k 6 2J .

For a typical state (superposition of the 2J + 1 basis states) the 2J Majorana dots
representing it are all separate [5] but for the basis states themselves the dots all lie at one
or other of two antipodal axis points. The state|J,m′〉 has (J +m′) coincident dots along
the positive axis direction and (J − m′) coincident dots along the negative axis direction.
The extreme case,m′ = J when all the dots coincide is known as a spin coherent state|′〉
labelled by the axis direction. Indeed, though no use is to be made of it here, a property
defining the Majorana vectors for a general state|ψ〉 is that they are the antipodes of points
for which the inner product〈′|ψ〉 has a zero as a function of axis direction [6–8].

For a cyclic sequence of states each dotuk traces out an independent loop on the sphere
(figure 1) (see also note (iv) later). The task, then, is to calculate the Berry phase in terms
of these parametrized loops. It should perhaps be noted in advance that, if one is willing to
sacrifice the democracy of the real space sphere, an alternative route based on stereographic
projection is simpler analytically and described in note (v)

Figure 1. The Majorana representation of a cycled state of spinJ = 2. Each of the 2J = 4
dots traces out its own loop on the sphere.

First we recall the relevant geometrical properties of the spin 1/2 states from which the
higher spin states are to be built in the Majorana representation. The spin 1/2 states|u〉
and|u′〉 described, up to overall phase, by the unit vectorsu andu′, have an inner product
〈u|u′〉 given by

〈u|u′〉 ≡ a eiA/2 (1)

where the amplitudea is the radius of the (chord) midpoint betweenu andu′,

a(u,u′) ≡
√

1+ u · u′
2

. (2)

The phaseA(u,u′)/2 is not determined by the vectorsu andu′ alone but depends on the
undescribed phases of the two states. For a cyclic product of states, however, the individual
phases arise in cancelling pairs. Thus, for example [A(u,u′) + A(u′,u′′) + A(u′′,u)]/2,
which is the phase of the product〈u|u′〉〈u′|u′′〉〈u′′|u〉, is determined by the three vectors.
Evaluating the product as Tr[(1+u·σ)(1+u′ ·σ)(1+u′′ ·σ)]/8 yields the complex number
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Figure 2. A schematic display of one term in the cyclic product of three states
〈ψ |ψ ′〉〈ψ ′|ψ ′′〉〈ψ ′′|ψ〉. All the dots should really lie at arbitrary positions on the unit sphere,
and be connected as indicated with geodesic arcs. TheJ value in the picture is 2, each state
having 2J = 4 dots. Each face of the schematic prism is associated with a single factor〈|〉.
Drawn on the face is one of the 4! permutations contributing to this factor. For example, for
the factor〈ψ ′|ψ ′′〉, the identity permutation is shown.

x+iy = [1+u·u′+u′·u′′+u′′·u+iu·(u′∧u′′)]/4. Thus [A(u,u′)+A(u′,u′′)+A(u′′,u)]
is twice the phase of this:

2arg[1+ u · u′ + u′ · u′′ + u′′ · u+ iu · (u′ ∧ u′′)]. (3)

It is ambiguous (byπ ) to write the arg as arctan(y/x) though it could be written as
2 arctan(y/(x +

√
x2+ y2)). The quantity (3) is recognized (following the remarkable

work of Panchatnam [9, 10] in optics) as the area or solid angle of the spherical triangle
(u,u′,u′′). Particularly useful below will be the area of an infinitely thin triangle in which
u′′ = u′ + du′, for which (3) yields

du′ · (u ∧ u′)
1+ u · u′ . (4)

Similarly for any cyclic sequenceA(u,u′) + A(u′,u′′) + · · · + A(u′′...′,u) is the area or
solid angle of the spherical polygon (u,u′,u′′, . . . ,u′′...′) (mod 4π ).

A general state|ψ〉 of spin J is the normalized symmetrized outer product of spin 1/2
states:|ψ〉 = |{uk}〉/(〈{uk}|{uk}〉)1/2, where

|{uk}〉 = ((2J )!)−1/2
∑
P

|uP1〉 × |uP2〉 × · · · × |uP2J 〉 (5)

the sum being over all (2J )! permutationsP , taking 1, 2, 3, . . . ,2J to P1, P2,
P3, . . . , P2J .

The inner product〈ψ |ψ ′〉 of two states|ψ〉 and |ψ ′〉 is then

〈ψ |ψ ′〉 = 〈{uk}|{u′k}〉√〈{uk}|{uk}〉
√〈{u′k}|{u′k}〉 (6)

where

〈{uk}|{u′k}〉 =
∑
P

∏
k

〈uk|u′Pk〉 (7)

=
∑
P

∏
k

a(uk,u
′
Pk) exp{iA(uk,u′Pk)/2} (8)
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the products being over the 2J values 16 k 6 2J . The numerator (7) still depends on
the individual phasesA of the states. Again, however, if a state jumps through a discrete
cycle |ψ〉 → |ψ ′〉 → |ψ ′′〉 → |ψ〉, and the cyclic product〈ψ |ψ ′〉〈ψ ′|ψ ′′〉〈ψ ′′|ψ〉 is formed,
the individual phases cancel. The mechanism by which they do so is that the product of
the three permutations in each term of (7) is associated (figure 2) with one or moreclosed
spherical polygons (with a total of 3× 2J sides). The phase of each product term is equal
to half its total polygon area.

The Berry phaseφ of a continuous cycle of states,|ψ〉 → |ψ ′〉 → · · · |ψ ′...′〉 → |ψ〉, is
given by e−iφ = 〈ψ |ψ ′〉〈ψ ′|ψ ′′〉 · · · 〈ψ ′...′|ψ〉, where there are infinitely many, infinitesimally
different, states whose inner products therefore have unit modulus (to the required first
order). To evaluate it, it is only necessary to examine an individual numerator term of the
type (7), withu′k = uk + duk. With a notation to be explained,

〈{uk}|{uk + duk}〉 =
∑
P

∏
k

a(uk,uPk + duPk) exp{iA(uk,uPk + duPk)/2} (9)

≡
∑
P

(aP +1aP ) ei(AP+1AP )/2 (10)

= ei1AI /2
∑
P

(aP +1aP )ei(AP+1AP−1AI )/2 (11)

≈ ei1AI /2

(∑
P

aPeiAP /2+
∑
P

1aPeiAP /2+ i
∑
P

1

2
(1AP −1AI)aPeiAP /2

)
(12)

≈ ei1AI /2

(∑
P

aP cos(Ap/2)+ i
∑
P

[1aP sin(AP /2)

+1

2
(1AP −1AI)aP cos(AP /2)]

)
. (13)

Here, apart from introducing the notation defined below and discarding all but leading order
real and imaginary terms, the only operation was recognizing that the first sum in (12) is
real becauseaP = aP−1, andAP = −AP−1 whereP−1 is the inverse of permutationP . The
notation is

aP ≡
∏
k

a(uk,uPk) =
∏
k

√
1+ uk · uPk

2
(14)

1aP ≡ aP
∑
k

1

2

uk · duPk
(1+ uk · uPk) (15)

1AP −1AI ≡
∑
k

uk · ( duPk ∧ uPk)
(1+ uk · uPk) (16)

where the summand here is, from (4), the area of the spherical triangle (uk,uPk,uPk+ duPk)
(figure 3).

AP is the total area of the polygons on the sphere generated by the 2J geodesic arcs
uk → uPk. This can be expressed as the sum of areas (3) of the spherical triangles
(n,uk,uPk), wheren is any unit vector (for example, it could be taken as one of theuk).

AP =
∑
k

2arg[(1+ n · uk + uk · uPk + uPk · n)+ in · (uk ∧ uPk)]. (17)

Finally, there is the quantity1AI . It is twice the phase factor associated with the identity
permutation. It is not necessary, or possible, to supply1AI explicitly (it depends on the
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Figure 3. The Majorana sphere for a cycling state withJ = 7/2 so that there are seven dots
each with a small displacement (the remainder of the cycle is not shown). This whole picture
represents the contribution of a particular permutation(1, 2, 3, 4, 5, 6, 7)→ (5, 2, 4, 1, 3, 7, 6),
to 〈ψ |ψ+ dψ〉, and is analogous to a single face of the prism in figure 2. Among the quantities
required is the phase change as each geodesic arc swings from its old to its new position (feint
to bold). This equals half the area of the thin triangle swept plus the phase change along the
short leg of the triangle du. The sum of the seven arc swing phase changes is denoted1AP /2.

individual phases of the states). All that will be required is the integral,AI , of 1AI , which
is simply the total area of the loops traced out by theuk. An explicit expression for this
total area as an integral of thin triangle areas (4) is, withn any fixed unit vector,

AI ≡
∮
1AI =

∑
k

∮
duk · (n ∧ uk)
(1+ uk · n) . (18)

The Berry phaseφ is read off as the phase of (13), using (15) and (16):

φ = −1

2
AI −

∮ {∑
P

[
1

2
aP sin(AP /2)

(∑
k

uk · duPk
1+ uk · uPk

)
+1

2
aP cos(AP /2)

(∑
k

uk · ( duPk ∧ uPk)
1+ uk · uPk

)]}(∑
P

aP cos(AP /2)

)−1

(19)

which, with the definitions (14), (17) and (18), is the result. There follow several notes.
(i) The usual special case in which the spin axis is cycled with constant axial angular

momentum component ¯hm′ is easily extracted from (19). The state|J,m′〉 has (J + m′)
dots in the positive axis direction and (J − m′) in the negative axis direction. The vector
cross products render all but the first term of (19) zero. Thus the Berry phase is just minus
half the total area of the cycles of the dots: [(J + m′) − (J − m′)]/2 = m′ times the area
of the axis direction cycle, as expected.

(ii) A more general special case is that of an arbitrary initial state subject to a time-
dependent Hamiltonianlinear in the angular momentum operators. This produces a ‘rigid
rotation’ of the state back to itself with a variable angular velocity vectorω(t) (normally
induced physically by a magnetic fieldB(t)). The Berry phase for this case (or special cases
of it) have also been studied previously [11–13], though the simplicity of the result, (20),
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from the Majorana analysis, has not emerged. In fact, following discussions with Berry
(20) can be understood so straightforwardly (see the end of this note), that all derivations,
including this, are really redundant. Nonetheless, the Majorana derivation is instructive,
yielding (21) as a corollary, and is given after the statement of the result.

φ = 2πnJ +
∫
ω(t) · S(t) dt. (20)

Here h̄S is the spin angular momentum vector ¯h(〈Sx〉, 〈Sy〉, 〈Sz〉). This vector obeys
dS/ dt = ω∧S and has constant magnitude. The integern is the number of complete turns
of the spin. Only its value mod 2 is required (since 2J is an integer and onlyφmod 2π
is meaningful) and only its value mod 2 is well defined. It is zero or one depending on
whether the cycle of orientations passed through in the rigid rotation is ‘contractible’ or not
in the space of orientations, SO(3).

The derivation of (20) from (19) follows from the fact [14] that, since the dot
pattern rotates rigidly, the cycle area of the dotuk is expressible geometrically as
2πn − ∫ ω(t) · uk(t) dt (mod 4π). Together with the substitution duk = ω ∧ uk dt in
the integral in (19), this gives the Berry phase in the form 2πnJ + ∫ ω(t) · v(t) dt where
the vectorv, depending only on the setuk, moves rigidly with them (i.e. dv/ dt = ω ∧ v).
To identify v with S it is only necessary to examine the case of constantω for which case
the Berry phase is found independently as the total phase 2πnJ , minus the dynamical phase
−S · ωt with |ω|t = 2πn for n complete turns.

An incidental benefit of this last identification is an explicit formula forS:

S = 1

2

∑
k

uk −
{∑

P

[
1

2
aP sin(AP /2)

(∑
k

uPk ∧ uk
1+ uk · uPk

)
−1

2
aP cos(AP /2)

(∑
k

uPk ∧ (uk ∧ uk)
1+ uk · uPk

)]}(∑
P

aP cos(AP /2)

)−1

. (21)

To make the result (20) obvious it can be interpreted as total phase minus dynamical phase
(in the Aharonov–Anandan sense). The total phase comes from the spinJ representation
of the unitary operator effecting the whole rotation, namely the identity operator times
exp(i2πnJ ).

(iii) For the caseJ = 1 the general Berry phase was found previously by Bouchiat
and Gibbons [15] by a quite different method. In the present description the result (19)
simplifies considerably since there are only two dots,u1 andu2, and the areaAP is zero

φ = −
∮

1

2
1AI − 1

2

∮
(du1− du2) · (u1 ∧ u2)

3+ u1 · u2
. (22)

With some manipulation this accords with the formula of Bouchiat and Gibbons. Since
photons have spin 1 it applies to optics [16].

(iv) Instead of each of the dotsuk moving around its own separate cycle, they can
permute: each can move from its own initial position to the initial position of another.
Since the dots are not distinguished, the final state of the system is the same as the initial
state, as is required for the definition of the Berry phase. Together, the paths of the dots
form one or more closed loops. The result (19) is unchanged (as is (25) below), except
that the loop integral symbols should strictly be replaced by ordinary integrals since the
individual vectorsuk do not complete loops.

An interesting instance of this alternative is when the initial state has an especially
symmetrical pattern of dots, for example two sets ofJ coincident dots at antipodal points
(for integerJ ). This state, when subject to rigid rotations, so that the dots remain antipodal,
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has zero Berry phase for any cycle in which the antipodes do not exchange positions, but a
phase factor of(−1)J if they exchange. This fact, which follows directly from (19), with
only the first term non-zero, is the interpretation, in the Majorana representation, of the
‘m = 0’ theorem of Robbins and Berry [17].

(v) A more compact formulation of the Berry phase for spinJ derives from representing
the dotsuk not on the unit sphere but in stereographic projection from a chosen ‘south pole’
−n onto the equatorial plane (x, y). Indeed this device due to Majorana himself is the usual
framework for calculations in his representation. Thus the vectorsuk map to the points
(xk, yk) ≡ (uk · x̂/[1+uk ·n],uk · ŷ/[1+uk ·n]). Combining the coordinates in this plane
into a complex numberzk = xk + iyk, the inner product of two unnormalized states is

〈{uk}|{u′k}〉 =
∑
P

∏
k

[(1+ z∗k z′Pk)/
√

1+ z∗k zk
√

1+ z′∗k z′k]. (23)

The square root products can be taken out of the sum and are thus merely further
normalization which is irrelevant for the phase. Substitutingz′k = zk + dzk, the remaining
sum becomes∑
P

∏
k

(1+ z∗k zPk + z∗k dzPk) ≈
∑
P

([∏
k

(1+ z∗k zPk)
][

1+
∑
k

z∗k dzPk
1+ z∗k zPk

])
(24)

from which the Berry phase can be read off:

φ = −
∮ ∑

P

Im

[(∏
k(1+ z∗k zPk)

)∑
k

z∗k dzPk
1+ z∗k zPk

]
∑
P

[∏
k

(1+ z∗k zPk)
] . (25)
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